Biometrics in the Bush Capital

Using a linear mixed model based wavelet transform to model non-smooth trends arising from designed experiments

Clayton Forknall
Alison Kelly Yoni Nazarathy Ari Verbyla
26th November 2025

What's in a title?

Non-smooth trends arising from designed experiments

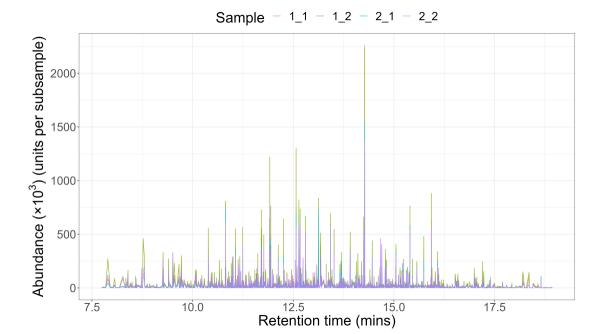
Linear mixed model based wavelet transform

Using LMM based wavelet transform to model non-smooth trends

A motivating example

Mass spectrometry (MS) based barley malt proteomics experiment (Forknall et al., 2023)

- Multi-phase experiment (Brien & Bailey, 2006):
 - ► Phase 1: Malt Sample Collection
 - Two separate grain samples collected at commencement of malting processing (g = 2)
 - Phase 2: MS Processing
 - Two subsamples taken from each grain sample (s = 2)
 - Individual subsamples processed using MS based proteomics technique
- Proteome composition via MS
 - Same 1811 peptides detected/quantified from each subsample.
 - Peptides detected at unique, non-equidistant retention times (t = 1811).
 - ▶ Data set = 7,244 peptide abundance observations ($n = g \ s \ t = 7,244$).



What's in a title?

Non-smooth trends arising from designed experiments

Linear mixed model based wavelet transform

Using LMM based wavelet transform to model non-smooth trends

The linear mixed model (LMM) based wavelet transform

$$\mathbf{y} = \mathbf{X} \boldsymbol{ au} + \mathbf{Z}_{\mathrm{d}} \mathbf{u}_{\mathrm{d}} + \mathbf{Z}_{\mathrm{t}} \mathbf{u}_{\omega} + \mathbf{e}$$

- **y** is an $n \times 1$ vector of abundance observations.
- ightharpoonup is a vector of fixed effects, with associated design matrix X.
- $lue{u}_{
 m d}$ is a vector of random effects describing the experimental design structure, with associated design matrix $lue{Z}_{
 m d}$.
- **e** is an $n \times 1$ vector of residual error effects.

The linear mixed model (LMM) based wavelet transform

$$\mathbf{y} = \mathbf{X} \boldsymbol{ au} + \mathbf{Z}_{\mathrm{d}} \mathbf{u}_{\mathrm{d}} + \mathbf{Z}_{\mathrm{t}} \mathbf{u}_{\omega} + \mathbf{e}$$

- **y** is an $n \times 1$ vector of abundance observations.
- ightharpoonup is a vector of fixed effects, with associated design matrix X.
- $lue{u}_{
 m d}$ is a vector of random effects describing the experimental design structure, with associated design matrix $lue{Z}_{
 m d}$.
- ▶ **e** is an $n \times 1$ vector of residual error effects.
- \blacktriangleright \mathbf{u}_{ω} is a $t \times 1$ vector of random effects resulting from the LMM based wavelet transform.
- ► These effects describe the non-smooth response of abundance as a function of retention time.
- $ightharpoonup \mathbf{Z}_{\mathrm{t}}$ is an $n \times t$ design matrix, necessary to respect multiple abundance observations at each retention time.

The linear mixed model (LMM) based wavelet transform

$$\mathbf{y} = \mathbf{X} \boldsymbol{ au} + \mathbf{Z}_{\mathrm{d}} \mathbf{u}_{\mathrm{d}} + \mathbf{Z}_{\mathrm{t}} \mathbf{u}_{\omega} + \mathbf{e}$$

► Random and residual error effects are assumed to follow a normal distribution with a zero mean vector and variance-covariance matrix:

$$\operatorname{var} \left(egin{bmatrix} \mathbf{u}_{\mathrm{d}} \\ \mathbf{u}_{\mathrm{w}} \\ \mathbf{e} \end{bmatrix}
ight) = egin{bmatrix} \mathbf{G}_{\mathrm{d}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_{\mathrm{w}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{R} \end{bmatrix}.$$

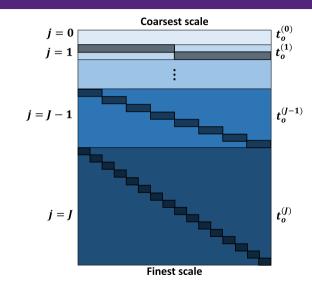
▶ Form of \mathbf{u}_{ω} and \mathbf{G}_{ω} is our focus and will be investigated further.

The wavelet transform

- ► What is it?
 - Mathematical construct proven to model non-smooth data, containing discontinuities.
- ► How can I use it?
 - Classical wavelets:
 - Built on framework of multiresolution analysis relies on the Fourier transform.
 - \triangleright Only applicable where observations are equidistant and dyadic ($\log_2(n)$ is integer) in number.
 - Second generation wavelets:
 - Implemented via 'lifting scheme' retains multiscale properties of the classical transform.
 - ► Can be applied to non-equidistant observations, of any number.
- ▶ Has it been incorporated into the LMM framework before?
 - Classical wavelets:
 - Yes Morris & Carroll, (2006); Wand & Ormerod, (2011).
 - Second generation wavelets:
 - ► Not until now!

The second generation wavelet transform Wavelet scales

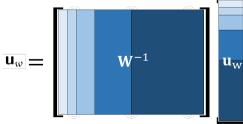
- Wavelet transform provides representation of data/effects at a series of scales.
- ▶ $J = \lceil \log_2(t) \rceil$ corresponds to the number of scales in the wavelet transform.
- ▶ t_o^(j) is the number of wavelet functions/coefficients at each scale j.
- As j increases, $t_o^{(j)}$ increases, but support of wavelet functions decreases.
- ► This formulation allows for representation of non-smooth trends, as influence of spikes limited in terms of scale and location (Nason, 2008).
- ► Wavelet transform can be implemented through wavelet basis matrix, **W**⁻¹.



The second generation wavelet transform Form of u...

$\mathbf{u}_{\omega} = \mathbf{W}^{-1}\mathbf{u}_{\mathrm{w}}$

- $lackbox{f W}^{-1} = egin{bmatrix} \phi^{(0)} & m{\Psi}^{(0)} & m{\Psi}^{(1)} & \dots & m{\Psi}^{(J-1)} \end{bmatrix}$ is the t imes t wavelet basis matrix.
 - $\phi^{(0)}$ and $\Psi^{(j)}$ are $t \times t_o^{(j)}$ matrices containing the values of the wavelet scaling function, $\phi^{(0)}(x)$, and wavelet functions, $\psi^{(j)}(x)$, at scale j.
- $lackbox{f u}_{
 m w} = \left[arphi \ oldsymbol{\omega}^{(0)^ op} \ oldsymbol{\omega}^{(1)^ op} \ \dots \ oldsymbol{\omega}^{(J-1)^ op}
 ight]^ op$ is the t imes 1 vector of wavelet coefficients.
 - $ightharpoonup \varphi$ and $\omega^{(j)}$ are $t_o^{(j)} \times 1$ vectors of coefficients associated with the wavelet scaling function and wavelet functions at scale j.



The second generation wavelet transform Form of G.

$$\textbf{u}_{\omega} = \textbf{W}^{-1}\textbf{u}_{\mathrm{w}}$$

Two options for $var(\mathbf{u}_w)$:

1. Simple wavelet transform:

- ► Simple variance component controls extent of 'non-smoothness'.
- $\begin{array}{l} \blacktriangleright \ \ \mathbf{u}_{\mathrm{w}} \sim \mathrm{N}\left(\mathbf{0}, \sigma_{\mathrm{w}}^{2} \mathbf{I}_{t}\right) \\ \\ \blacktriangleright \ \ \mathbf{G}_{\mathrm{w}} = \sigma_{\mathrm{w}}^{2} \mathbf{W}^{-1} \mathbf{W}^{-1}^{\top} \end{array}$

The second generation wavelet transform Form of \mathbf{G}_{ω}

$$\mathbf{u}_{\omega} = \mathbf{W}^{-1} \mathbf{u}_{\mathrm{w}}$$

Two options for $var(\mathbf{u}_w)$:

2 Partitioned wavelet transform:

Uses wavelet scale structure implicit in wavelet functions, allowing for heterogeneous wavelet variance at each wavelet scale:

$$\operatorname{var}(\mathbf{u}_{w}) = \operatorname{var}\left(\begin{bmatrix} \varphi \\ \boldsymbol{\omega}^{(0)} \\ \boldsymbol{\omega}^{(1)} \\ \vdots \\ \boldsymbol{\omega}^{(J-1)} \end{bmatrix}\right) = \begin{bmatrix} \sigma_{\varphi}^{2} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \sigma_{\omega^{(0)}}^{2} \mathbf{I}_{t_{o}^{(0)}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \sigma_{\omega^{(1)}}^{2} \mathbf{I}_{t_{o}^{(1)}} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \sigma_{\omega^{(J-1)}}^{2} \mathbf{I}_{t_{o}^{(J-1)}} \end{bmatrix}$$

Fig. 1.
$$\mathbf{G}_{\omega} = \sigma_{\varphi}^{2} \phi^{(0)} \phi^{(0)\top} + \sum_{i=0}^{J-1} \sigma_{\omega^{(i)}}^{2} \mathbf{\Psi}^{(i)} \mathbf{\Psi}^{(j)\top}$$

What's in a title?

Non-smooth trends arising from designed experiments

Linear mixed model based wavelet transform

Using LMM based wavelet transform to model non-smooth trends

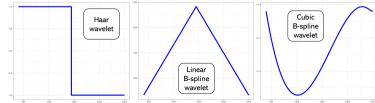
Implementing LMM based wavelet transform Software solutions

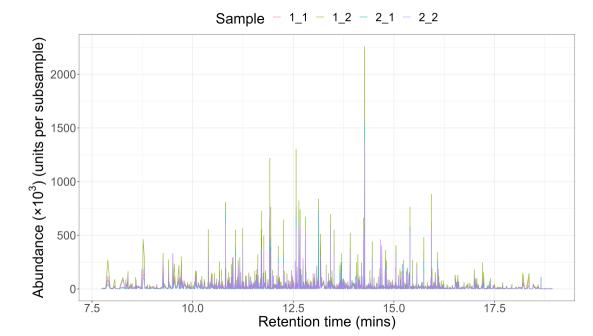
► LMM implementation:

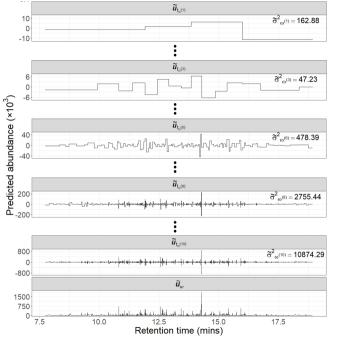
- ▶ Implementable in any LMM software or package that enables the user to specify their own design matrix, or matrix of basis functions.
 - Successfully implemented in R using:
 - asreml (The VSNi Team, 2023),
 - ► lmmSolver (Boer, 2023),
 - ▶ sommer (Covarrubias-Pazaran, 2016).

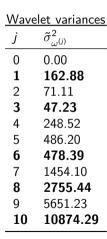
Second generation wavelet basis construction

- ▶ I developed an R package to construct the B-spline wavelet basis matrix (Jansen 2016, 2022).
- ▶ Package calculates W⁻¹ for:
 - Haar wavelet
 - ► Linear B-spline wavelet
 - ► Cubic B-spline wavelet









Future work

- ▶ Explore contribution of different scales of the wavelet transform are all scales necessary?
- ▶ Potential to explore two dimensional setting tensor wavelet transforms.
- Forthcoming methodology paper.

Acknowledgements

Supervisors:

- Associate Professor Yoni Nazarathy
- Dr Alison Kelly
- Professor Ari Verbyla

► Institutions:

- ► The University of Queensland
- Queensland Department of Primary Industries
- The University of Adelaide, in particular The Plant Accelerator, part of the APPN

Funding:

- The University of Queensland via a Research Training Program Tuition Fee Offset
- Queensland Department of Primary Industries

References

Boer, M. P. 2023. Tensor product P-splines using a sparse mixed model formulation. Statistical Modelling, 23: 465-479.

Brien, C. J. and Bailey, R. A. 2006. Multiple randomisations. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68: 571 - 609.

Covarrubias-Pazaran, G. 2016. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE, 11: 1-15.

Forknall, C. R., Verbyla, A. P., Nazarathy, Y., Yousif, A., Osama, S., Jones, S. H., Kerr, E., Schulz, B. L., Fox, G. P. and Kelly, A. M. 2023. Covariance Clustering: Modelling covariance in designed experiments when the number of variables is greater than experimental units. *Journal of Agricultural, Biological and Environmental Statistics*, 29 (2): 232-256.

Jansen, M. 2016. Non-equispaced B-spline wavelets. *International Journal of Wavelets, Multiresolution and Information Processing*, 14 (6).

Jansen, M. 2022. Wavelets from a Statistical Perspective. Book. Boca Raton: CRC Press.

Morris, J. S. and Carroll, R. J. 2006. Wavelet-based functional mixed models. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 68: 179 - 199.

Nason, G. P. 2008. Wavelet Methods in Statistics with R. Book. New York: Springer.

The VSNi Team. 2023. asreml: Fits linear mixed models using REML. 4.2.0.370.

Wand, M. P. and Ormerod, J. T. 2011. Penalized wavelets: Embedding wavelets into semiparametric regression. *Electronic Journal of Statistics*, 5: 1654 - 1717.

