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A motivating example

prraicll  Mass spectrometry (MS) based barley malt proteomics experiment (Forknall et al., 2023)
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» Multi-phase experiment (Brien & Bailey,
2006):
» Phase 1: Malt Sample Collection
» Two separate grain samples collected at
commencement of malting processing
(g=2)
» Phase 2: MS Processing
» Two subsamples taken from each grain
sample (s = 2)
» Individual subsamples processed using MS
based proteomics technique
» Proteome composition via MS

> Same 1811 peptides detected/quantified from
each subsample.

» Peptides detected at unique, non-equidistant
retention times (t = 1811).

» Data set = 7,244 peptide abundance
observations (n = g st =7,244).
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T The linear mixed model (LMM) based wavelet transform
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y= XT + Zdud A Ztu\\* F @

» yis an n x 1 vector of abundance observations.
» T is a vector of fixed effects, with associated design matrix X.

» uy is a vector of random effects describing the experimental design structure, with
associated design matrix Z4.

» e is an n x 1 vector of residual error effects.



T The linear mixed model (LMM) based wavelet transform
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Y = X7 + Zdud aF Ztuw +e

» yis an n x 1 vector of abundance observations.

» T is a vector of fixed effects, with associated design matrix X.

» uq is a vector of random effects describing the experimental design structure, with
associated design matrix Z4.

» e is an n x 1 vector of residual error effects.

u, is a t X 1 vector of random effects resulting from the LMM based wavelet transform.

These effects describe the non-smooth response of abundance as a function of retention
time.

Z; is an n X t design matrix, necessary to respect multiple abundance observations at each
retention time.




T The linear mixed model (LMM) based wavelet transform
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y= Xt + Zdud + Ztu\\* +e

» Random and residual error effects are assumed to follow a normal distribution with a zero
mean vector and variance-covariance matrix:

uq Gd 0 0
var | lus| | =]0 G, 0
e 0 0 R

» Form of u, and G, is our focus and will be investigated further.
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The wavelet transform

» What is it?
» Mathematical construct proven to model non-smooth data, containing discontinuities.

» How can | use it?

» Classical wavelets:
» Built on framework of multiresolution analysis - relies on the Fourier transform.
> Only applicable where observations are equidistant and dyadic (log,(n) is integer) in number.

» Second generation wavelets:
» Implemented via ‘lifting scheme’ - retains multiscale properties of the classical transform.

» Can be applied to non-equidistant observations, of any number.

» Has it been incorporated into the LMM framework before?

> Classical wavelets:
> Yes - Morris & Carroll, (2006); Wand & Ormerod, (2011).

» Second generation wavelets:
» Not until now!



The second generation wavelet transform
el Wavelet scales

Coarsest scale
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» Wavelet transform provides representation j=0
of data/effects at a series of scales. j=1

» J = [log,(t)] corresponds to the number
of scales in the wavelet transform.

> tY) is the number of wavelet j=J-1
functions/coefficients at each scale j.

» As j increases, t) increases, but support
of wavelet functions decreases.

eI

» This formulation allows for representation
of non-smooth trends, as influence of
spikes limited in terms of scale and i=J
location (Nason, 2008).

» Wavelet transform can be implemented
through wavelet basis matrix, W™ Finest scale

N0

o



The second generation wavelet transform
Pty  Form of u,,

-1
u, =W "u,

> Wl= [qs(o) v gy W(J_l)} is the t x t wavelet basis matrix.

> & and WY are t x t¥) matrices containing the values of the wavelet scaling function,
#9(x), and wavelet functions, )¥)(x), at scale j.

.
> u, = [(p w® " w® w(J_l)T] is the t x 1 vector of wavelet coefficients.

> ¢ and wY are t¥) x 1 vectors of coefficients associated with the wavelet scaling function
and wavelet functions at scale j.




The second generation wavelet transform
firtteydll  Form of G,

Two options for var (uy):

1. Simple wavelet transform:

» Simple variance component controls extent of ‘non-smoothness’.

> u, ~N(0,0%1)

> G, =o2W w1’



The second generation wavelet transform
firtteydll  Form of G,

-1

Two options for var (uy):

2 Partitioned wavelet transform:

> Uses wavelet scale structure implicit in wavelet functions, allowing for heterogeneous wavelet
variance at each wavelet scale:

® o5 0 0 0
w@ 0 O'i(o) It(o] 0 0
1 2
var(uy) = var w® _|0 0 SOLA) 0
w1 0 0 0 oLyl

> G, =02¢0p0 " + S 7 wOw0)
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Implementing LMM based wavelet transform
Al Software solutions

» LMM implementation:
» Implementable in any LMM software or package that enables the user to specify their own
design matrix, or matrix of basis functions.
» Successfully implemented in R using:
> asreml (The VSNi Team, 2023),
» ImmSolver (Boer, 2023),
» sommer (Covarrubias-Pazaran, 2016).
> Second generation wavelet basis construction
> | developed an R package to construct the B-spline wavelet basis matrix (Jansen 2016, 2022).
» Package calculates W™! for:
» Haar wavelet
» Linear B-spline wavelet
» Cubic B-spline wavelet

Haar
wavelet

Cubic
B-spline
wavelet

Linear
B-spline
wavelet
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THERS[TY FUture Work
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» Explore contribution of different scales of the wavelet transform - are all scales necessary?
» Potential to explore two dimensional setting - tensor wavelet transforms.

» Forthcoming methodology paper.
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